The UCSD/UCLA/Salk/Cedars-Sinai DRC

The NIDDK Centers program is:

Diabetes Research Centers (DRC)

Grant number: P30 DK063491

The Components of the Center include:

A. Transgenic and Knock-out Mouse Core
 Pamela L. Mellon

B. Mouse Metabolic and Molecular Physiology Core
 Andrea Hevener, Karen Reue, & Edward Dennis

C. Epigenetics and Genomics Core
 Chris Glass, Bing Ren, Gary Hardiman, and Nicholas Webster

D. Human Genetics Core
 Jerome Rotter & Leslie Raffel

E. Novel Target Discovery and Assay Development Core
 Julian Whitelegge

F. Pilot and Feasibility Program
 Kuk-Wha Lee & Peter Tontonoz

G. Enrichment Program
 Maike Sander & Mark Goodarzi

H. Administrative Component
 Jerrold M. Olefsky, Pamela Mellon & Peter Tontonoz

The website address is: http://DRC.ucsd.edu

The listserv address is: DRC-L@UCSD.EDU

Please remember to cite the DERC Grant in all papers that utilize DERC Cores or are supported by the Pilot and Feasibility Awards:

“Our research utilized Core (or Research) support from the UCSD/UCLA NIDDK Diabetes Research Center P30 DK063491.”
Upgrades to our Cores

Our Biomedical Research Cores have undergone substantial growth and change in the renewal process. For example, our Inflammation Core (previous Core E) was incorporated into the Metabolic and Molecular Physiology Core (Core B) and an entirely new core entitled “Novel Target Discovery and Assay Development Core” was created as new Core E. This new core focuses on proteomic analysis of plasma and tissue samples and provides unique services in the generation of novel immunoassays for biologically relevant proteins of interest. The Transcriptional Genomics Core (previous Core C) now incorporates a variety of epigenetic technologies, which provide a major new strength for our DRC faculty. Our Mouse Phenotyping Core (previous Core B) has also undergone significant evolution and growth and has become the “Metabolic and Molecular Physiology Core” (new Core B) to reflect these changes. For example, a Lipomics sub-core has been added to this program, headed up by Dr. Edward Dennis. Dr. Dennis is the Director of the LIPID MAPS Consortium at UCSD and his laboratory has developed many new methodologies for analyzing over 700 lipid species in blood as well as tissue samples from humans and mice. He is among the world’s leaders in this area, and the addition of these mass spec-based lipidomics methodologies and analyses to the Metabolic and Molecular Physiology Core (B) represent powerful new services available to our membership. This core has also acquired important new technologies in mitochondrial functional analyses, as well as ex vivo studies of insulin target tissues. The Transgenic and Knock-out Mouse Core (Core A) has added new advanced technologies of CRISPR/Cas9, facilitating the advances of our DRC investigators in genetically modified mice. The Human Genetics Core (Core D) has expanded its genotyping capabilities, adding specialized chips including the Cardio-Metabochip, the Immunochip, the Exome chip, and the HumanMethylation450 DNA Analysis BeadChip. Exome and targeted DNA sequencing, and induced pluripotent stem cells (PSC) have been added. All of these changes and new services will be presented throughout this year in upcoming newsletter features.
2014 DERc P&F Grants AWARDED

Pilot and Feasibility Projects in Endocrinology & Diabetes
Pilot & Feasibility Program, Director: Peter Tontonoz

On behalf of the UCSD/UCLA Diabetes Research Center Pilot and Feasibility Grant Committee, the UCSD/UCLA DRC Center is delighted to announce that we have awarded 7 outstanding projects for seed funding in 2014 out of 22 superb applications. The number and quality of the applications is clear evidence for the remarkable scientific environment that exists in our universities for supporting diabetes research especially among promising young scientists. The UCSD/UCLA DRC funds four grantees per year at approximately $40,000-$50,000.

THE UCSD/UCLA DERc is Proud to Announce the 2014 P&F Awardees:

2014 Junior Faculty Developmental Award winner:
Thomas Vallim, PhD, UCLA, for the proposal "Identifying a Role for FXR-MAFG in Bile Acid and Glucose Homeostasis". Partnered with UCLA CTSI.
Ji Zhang, PhD, UCSD, for his project "Identify a Novel Regulator of Adipose Tissue and Insulin Resistance". Declined

P&F awardees:
- Simon Schenk, PhD, UCSD, for the proposal "Regulation of Muscle Insulin Action, the Acetylome and Gene Transcription by GCN5". Partnered with UCSD Dean's Research Award.
- Cynthia Hong, PhD, UCLA, for the proposal "Adipose Cholesterol Metabolism and Type 2 Diabetes".
- Wenxian Fu, PhD, UCSD, for the proposal "Identifying the Initiating Factors in Type 1 Diabetes by Disclosing the Crosstalk among Islet Vascular Inflammation, Immune Responses and Beta Cell Death". Partnered with UCSD CTRI and UCSD Dean's Research Award.
- Olivia Osborn, PhD, UCSD, for the proposal "Identification of hypothalamic targets for the prevention of relapse to obesity after weight loss".
- Simon Hui, PhD, UCLA, for the proposal "Regulation of Insulin Sensitivity by Acad11".

Please join us all in congratulating these promising young investigators and we all look forward to seeing the fruits of their research in the literature and in future DRC meetings.

See a full history of our P&F awardees at: http://drc.ucsd.edu/pf/award-history.shtml

Final report and presentation at the annual retreat
A report on each pilot and feasibility study conducted will be provided at the end of the study period and an update will be provided yearly for four years after the completion of the award. These brief reports will contain professional career status at the time of the award and at the time of the report; an overview of the project including its significance and salient results; a list of resulting publications; and peer-reviewed subsequent funding in the same or related areas. Funded P&F investigators will attend the annual DRC retreat as well as a meeting of Regional P&F awardees, and present the results of their work in the year immediately following their award. Travel to these meetings will be charged to the individual P&F awards.

ALL PAPERS MUST CITE P30 DK063491
Novel Target Discovery and Assay Development Core

Julian Whitelegge

The Novel Target Discovery and Assay Development Core (NTDAC) will provide investigators at UCLA, UCSD, the Salk Institute and Cedars-Sinai with consultancy and a suite of state-of-the-art molecular measurements not available from other national resources. The new NTDAC core assembles a comprehensive and highly specialized core with expertise in biological mass spectrometry and proteomics (Julian Whitelegge Ph.D., Director), as well as ELISA assay development (Peter Tontonoz M.D. Ph.D., co-director). Strengths of this biomedical core include the extensive expertise of the core leadership in diabetes research, wide experience in protein and peptide analysis, access to bioinformatics resources, and the collegial outreach of NTDAC leadership to DRC investigators to assist in the strategic planning and execution of studies relevant to the DRC mission.

The objectives of the new core can be summarized in five aims.

A) Novel target discovery and assay development core user interface. Responsive consultation to streamline direct analysis of proteins and peptides.

B) Discovery mass spectrometry services and bioinformatics. Experimental approaches to discover new diabetes-related proteins and peptides.

C) Biomarker qualification, immunocapture and top-down mass spectrometry. Qualification of lead proteins and peptides with respect to biological function.

D) Assay construction for novel peptides and proteins. Development and optimization of reliable protein and peptide assays for advancement toward the clinic.

E) ELISA services for novel assays. Provision of unique, newly developed translational assays for use in diabetes care.

The overarching function of the Novel Target Discovery and Assay Development Core (NTDAC) is to enable DRC members to investigate a clinically relevant research question in an open ‘discovery’ mode, from mouse to cell to patient in an efficient, cost-effective and expedited fashion. Discovery proteomics and peptidomics mass spectrometry experiments will reveal potential new biomarkers that will be qualified and validated before development of robust clinical ELISA assays for improving patient outcomes.