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Discovering metabolic disease gene interactions
by correlated effects on cellular morphology
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ABSTRACT

Objective: Impaired expansion of peripheral fat contributes to the pathogenesis of insulin resistance and Type 2 Diabetes (T2D). We aimed to
identify novel diseaseegene interactions during adipocyte differentiation.
Methods: Genes in disease-associated loci for T2D, adiposity and insulin resistance were ranked according to expression in human adipocytes.
The top 125 genes were ablated in human pre-adipocytes via CRISPR/CAS9 and the resulting cellular phenotypes quantified during adipocyte
differentiation with high-content microscopy and automated image analysis. Morphometric measurements were extracted from all images and
used to construct morphologic profiles for each gene.
Results: Over 107 morphometric measurements were obtained. Clustering of the morphologic profiles accross all genes revealed a group of 14
genes characterized by decreased lipid accumulation, and enriched for known lipodystrophy genes. For two lipodystrophy genes, BSCL2 and
AGPAT2, sub-clusters with PLIN1 and CEBPA identifed by morphological similarity were validated by independent experiments as novel proteine
protein and gene regulatory interactions.
Conclusions: A morphometric approach in adipocytes can resolve multiple cellular mechanisms for metabolic disease loci; this approach
enables mechanistic interrogation of the hundreds of metabolic disease loci whose function still remains unknown.
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1. INTRODUCTION

Modern genome engineering methods now make it feasible to
selectively inactivate any gene in any cultured human cell [1]. In the
past decade, a plethora of disease relevant genetic loci have been
identified by genetic association studies (e.g. GWAS) of clinically
phenotyped populations for metabolic diseases/traits including Type 2
Diabetes, waist-to-hip ratio, body mass index and fasting insulin [2].
These advances have the potential to accelerate therapeutic pathway
discovery by enabling the perturbation of many disease genes in
parallel in any cell model. What is now needed are scalable readouts
that can interrogate multiple mechanisms and disease relevant cell
models in which to apply them. Multiparametric “omic” readouts
quantifying general processes such as gene transcription have proven
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scalable and well-suited to interrogating a variety of molecular
mechanisms [3].
Cellular morphology, i.e. how a cell appears under the microscope, is
a potentially even more general readout as it represents the amal-
gamation of genetic, transcriptional, and proteomic states [4,5].
Cellular morphology has been successfully deployed to interrogate
subcellular mechanisms [6] and several recent studies have
demonstrated the feasibility of combining morphological readout with
gain/loss-of-function genetic perturbations to functionally annotate
genes into molecular pathways [7,8]. Thus far, however, the mech-
anistic information gained has been limited to cell growth, mitosis
and proliferation, likely due to the use of heterologous and cancer cell
models which are not suitable for studying most phenotypes of
interest.
dge Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke’s
dge, Cambridge CB2 1PD, UK 4Genetics and Pharmacogenomics, Merck & Co., Inc.,
es Centre, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK 6Division of
02215, USA 7Harvard Medical School, Department of Genetics, Boston, MA 02215,

Diego, La Jolla, CA 92093, USA

California San Diego, La Jolla, CA 92093-0688, USA. E-mail: amajithia@ucsd.edu

019 � Available online 13 March 2019

mbH. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
www.molecularmetabolism.com



Most adult onset genetic diseases do not manifest in every cell in the
body [9] making it likely that the study of disease loci/genes in cell
types matched to disease is more likely to yield relevant cellular
mechanisms. As a case in point, familial [10] and population [11e14]
based genetic studies of metabolic disease have identified dozens of
genes expressed in adipocytes which confer risk by altering cellular
features in adipocytes. The functional pathways altered in these sys-
tems remain poorly characterized.
We hypothesized that perturbing these loci/genes in adipocytes in vitro
and assessing the effect on morphologic features would enable disease
relevant functional annotation and yield diverse mechanistic insights
regarding insulin resistance and adipocyte differentiation. Here, we
demonstrate the utility of this approach in metabolic disease. We
selected 125 genes by filtering associated loci from metabolic disease
association catalogs for adipocyte expression, and then ablated these
genes in human pre-adipocytes using CRISPR/CAS9. We then profiled
the effect on cellular morphology using morphologic similarity to identify
mechanistic interactions between genes. We demonstrate that our
morphometric approach is capable of surveying diverse cellular
mechanisms by validating both a proteineprotein interaction on the lipid
droplet surface and a transcriptional regulatory interaction in the DNA.

2. METHODS

2.1. Lentiviral gene ablation constructs
For the each of the 133 selected genes (125 metabolic disease genes
and controls and 8 essential gene controls) (Supplementary Table 1),
three CRISPR/CAS9 constructs were designed using “Ruleset 2”
as described previously [15] and instantiated in (https://
portals.broadinstitute.org/gpp/public/analysis-tools/sgrna-design). The
designed constructs were cloned into a lentiviral transduction vector
(lentiCRISPRv2) which contained a CAS9 transgene and a mammalian
antibiotic resistance cassette for puromycin. An additional 25 distinct
constructs targeting no genomic sequence (non-targeting controls)
were cloned. Lentivirus was produced from the resulting construct array
using standard protocols (https://portals.broadinstitute.org/gpp/public/
resources/protocols).

2.2. Genetic ablation, mutation quantification and imaging in SGBS
adipocytes
The lentiviral guide array described above was transduced into SGBS
pre-adipocytes (gift from Martin Wabitsch) as previously described in
details [16]. In brief, for assessment of targeting efficiency SGBS pre-
adipocytes were plated in 96-well plates at 5000 cell/cm2 with 2
biological replicates per targeting construct, selected with puromycin
and incubated for ten days prior to extraction of genomic DNA, PCR
and shotgun sequencing by standard protocols (https://portals.
broadinstitute.org/gpp/public/resources/protocols). Gene modifica-
tion efficiency from the resulting sequences using CrisprVariants
software with default parameters [17] (Supplementary Table 1). For
imaging and morphologic profiling experiments (Figure 1A), the
lentiviral array was transduced into SGBS pre-adipocytes plated at
two densities (5000 and 8000 cells/cm2) and with four biological
replicates per targeting construct at each density. The plate position
for the biological replicates for each targeting construct was
permuted so as to randomize potential systematic confounders such
as plate position and seeding density. Infected cells were selected
with puromycin, incubated for 10 days and then stimulated to
differentiate under standard adipogenic condition [18]. Following
differentiation, cells were fixed and stained for nuclei (DAPI) and lipid
(BODIPY) as previously described [16].
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The fixed and stained cells were imaged on a high-content imaging
platform (Opera Phenix�) at 20� magnification in three channels
corresponding to DAPI, BODIPY, and brightfield �2. Each well was
imaged at five sites (Figure 1A).

2.3. Image processing, filtering, feature aggregation and data
analysis
Morphologic features were extracted from each cell using the
Harmony� high-content image analysis software. The DAPI channel
was utilized to identify nuclei, extract related parameters, and the
residual cytoplasmic DAPI staining to segment cells. The BODIPY and
brightfield channels were used to identify lipid droplets and extract
related intensity, morphology and texture parameters.
All features were measured per cell and summarized (mean and
standard deviation) for each well resulting in a total of 425 summarized
features for each well (Supplementary Table 2) using the Harmony
software. Subsequent analyses were done in R3.42 using base
packages unless noted. First features were filtered for reproducibility
by computing the six possible pairwise Pearson correlation coefficient
combinations among the four biological replicates for each guide;
features with a negative correlation coefficient or two-sided p > 0.05
were removed (Supplementary Table 2: “non-reproducible”). Subse-
quently, each feature was Z-normalized across all guides and filtered
for redundancy by pruning features that exceeded a Pearson r> 0.9 in
the correlation matrix computed across all features (Supplementary
Table 2: “correlated”; caret package [19]).
Subsequently for each feature, the Z-values across all guides for a
given gene were averaged (median) to produce a table of 133
gene � 148 feature matrix for clustering (Figure 1B). Clustering was
performed on euclidean distance matrix using Ward’s method [20]
(“Ward.D2” in R3.42). p-Values for clusters were calculated using
multiscale bootstrap resampling as instantiated in R [21] (pvclust
package: 10,000 bootstrap replications; Supplementary Figure 1).

2.4. Seipin and perilipin transgene constructs
Constructs to express FLAG-seipin and FLAG-perilipin were generated
in the pCMV3xFLAG vector (Sigma Aldrich). Seipin-Myc and perilipin-
Myc were in the pcDNA3.1 MycHis vector (LifeTechnologies). Fusion
constructs for BiFC experiments were generated by inserting the N-
terminal (1e158) fragment of yellow fluorescent protein (YFP) either
downstream or upstream of seipin in pCMV3xFLAG to generate SeYn
and YneS fusion constructs, respectively, as previously described
[22]. The C-terminal (155e239) fragment of YFP was amplified and
inserted downstream or upstream of perilipin in pcDNA3.1. Wild-type
Myc-seipin (WT) or mutants lacking the N terminus, first trans-
membrane domain, ER luminal loop region, second transmembrane
domain, or the C terminus were a gift from Daisuke Ito, Keio University,
Japan [23].

2.5. Co-IP of perilipin with seipin in human adipocytes
pcDNA3.1 Seipin-Myc (LifeTechnologies) was subcloned into
pLXI_TRC401, a lentiviral expression vector containing an inducible
Tet-on TRE promoter, by restriction cloning using NheI and BsrGI. The
resulting pLXI-Seipin-MycHis construct contained the Seipin cDNA with
a C-terminal MycHis tag and a subsequent stop codon. SGBS pre-
adipocytes were transduced with pLXI-Seipin-MycHis lentiviruses
and selected with puromycin as previously described [16]. Following
selection, the transduced pre-adipocytes were grown to confluence
and stimulated with an adipocyte differentiation cocktail [18] as well as
doxycycline to stimulate seipin transgene expression. After seven days,
the partially differentiated cells were collected for Co-IP. About 50,000
s an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). 109



Figure 1: Functional interaction of metabolic disease-associated loci in human adipocytes by morphologic profiling. (A) [1] Genes were systematically identified from both
Mendelian and common forms of metabolic disease alongside known regulators of adipocyte function and insulin signaling. This list was filtered by gene expression in differ-
entiating SGBS cells resulting in 125 genes for study. Three independent CRISPR/CAS9 constructs were designed for each gene alongside non-targeting controls, and cloned for
arrayed lentiviral transduction. [2] SGBS pre-adipocytes were infected with the lentiviral guide array and incubated for 10 days to allow gene knockout. After incubation transduced
cells were differentiated into adipocytes; selected constructs were re-infected for assessment of gene modification/mutation efficiency. [3] Differentiated cells were stained for lipid
(BODIPY) and nuclei (DAPI) and imaged in the corresponding fluorescent channels along with two types of brightfield images on an automated high-content microscope (Opera
Phenix). [4] Each image was processed to segment cells, extract and numerically quantify 425 morphologic features. The resulting data were filtered for quality, removing poorly
reproducible and redundant features to create morphologic profiles for each of the genes studied. The morphologic features were clustered to relate genes to one another and
obtain novel mechanistic insight. (B) Morphologic profiles of 125 metabolic disease genes and 8 essential gene controls perturbed in human adipocytes. Z-scores of the 425
morphologic features (rows) for the 133 perturbed genes (columns) are displayed as a heatmap. The genes are clustered by morphologic similarity among the gene knockouts. The
three major branches of the clustering dendrogram are color-coded as described in detail in the methods and Figure 2.
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cells were lysed in 200 ml Pierce� IP Lysis Buffer (Thermo Fisher
87788) plus Halt� Protease and Phosphatase Inhibitor Cocktail
(100�) (Thermo Fisher 78440). Lysates were rotated at 4 �C for
30 min and then centrifuged at maximum speed for 30 min at 4 �C.
Supernatants were collected and protein concentration was deter-
mined using Micro BCA� Protein Assay Kit (Thermo Fisher 23235).
Perilipin was pulled down using anti-perilipin XP Rabbit mAb (CST
9349) with a Protein A bead slurry (CST 9863). Bound beads were then
pelleted, washed and heated for 5 min at 95 �C. Immunoprecipitated
samples were electrophoresed using Mini Protein TGX gels (Bio Rad
4561095) for 30 min at 200 V and transferred to nitrocellulose
110 MOLECULAR METABOLISM 24 (2019) 108e119 � 2019 The Authors. Published by Elsevier G
membranes. Membranes were blocked in 5% milk (in TBST) for 1 h
and then incubated overnight at 4 �C with anti-Perilipin (1:1000) (CST
9349), anti-Seipin (1:5000) (CST 23846) antibodies in 5% BSA, anti-c-
Myc (1:10,000) (Novus NB600-335) and anti-Cyclophilin A (1:1000)
(Abcam ab58144) antibodies in 1% non-fat milk. Membranes were
subsequently incubated in Clean Blot secondary antibody (1:400 in 5%
non-fat milk in TBST), anti-c-Myc blots in anti-goat secondary antibody
(1:2000 in 2.5% non-fat milk in TBST) (R&D HAF109), and cyclophilin A
blots with anti-mouse secondary (1:2000 in 5% non-fat milk in TBST)
(CST 7076) for 1 h. Blots were developed using Pierce ECL Western
Blot Substrate (Thermo Fisher 32106).
mbH. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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2.6. Bimolecular fluorescence complementation (BiFC) analysis
3T3-L1 cells were seeded and allowed to grow to confluence (day�2),
fed with fresh medium for two further days, before being differentiated
on day 0. Cells were transfected with the desired BiFC constructs using
Lipofectamine LTX reagent on day 2 of differentiation then incubated at
37 �C for 48 h. This was followed by a shift to 32 �C for 20 h on day 4 of
differentiation, then to 30 �C for 4 h on day 5, before fixation for analysis
by confocal microscopy. Cells were immunostained with anti-FLAG
(seipin) or anti-Myc (perilipin) antibodies as described previously [22].

2.7. Atomic force microscopy
AFM experiments were performed as previously described in detail
[22,24]. Briefly, tsA 201 cells (a subclone of HEK293) were transiently
transfected with a total of 250 mg of DNA in 5 � 162 cm2 culture
flasks using calcium phosphate precipitation. Cells were harvested
48 h later, lysed and proteins isolated and eluted from anti-Myc (seipin)
agarose. Perilipin in the eluates was detected on blots using an anti-
body to its FLAG tag. Isolated proteins were imaged using ‘tapping’
mode in air. Particle heights and diameters were measured manually
by the Nanoscope software and used to calculate the molecular volume
of each particle using the equation

Vm ¼ ðph=6Þ�3r 2 þ h2
�

(1)

where h is the particle height and r is the radius. Molecular volume
based on molecular mass was calculated using the equation

Vc ¼ ðM0=N0ÞðV1 þ dV2Þ (2)

where M0 is the molecular mass, N0 is Avogadro’s number, V1 and V2
are the partial specific volumes of particle (0.74 cm3/g) and water
(1 cm3/g), respectively, and d is the extent of protein hydration (taken
as 0.4 g water/g protein).

2.8. Immunoprecipitation of perilipin and deletion mutants of seipin
HEK293 cells were transfected with FLAG-perilipin in the absence or
presence of either wild-type or mutant forms of Myc-tagged seipin.
Lysates and anti-FLAG immunoprecipitates were prepared as
described previously [22]. Forty-eight hours after transfection
HEK293 cells were lysed in buffer comprising 50 mM n-octyl-b-D-
glucopyranoside, 50 mM Tris, pH 6.8, 150 mM NaCl, 1 mM EDTA
supplemented with protease inhibitors (Complete EDTA-free, Roche
Applied Science) and phosphatase inhibitor cocktails (Sigma). Cells
were sonicated, centrifuged at 16,000 g for 10 min at 4 �C. Lysate
containing 1 mg of protein was added to 30 ml of anti-FLAG-agarose
beads (SigmaeAldrich) pre-equilibrated with lysis buffer and
rotated gently for 2 h at 4 �C. Following centrifugation (8200 g for
30 s at 4 �C) supernatants were removed and beads washed three
times with lysis buffer. FLAG-tagged proteins were eluted from
beads by addition of 100 ml of 200 ng/ml 3� FLAG peptide (Sigmae
Aldrich) in TBS (50 mM TriseHCl, pH 7.4, 150 mM NaCl). Lithium
dodecyl sulfate (LDS) sample buffer (Invitrogen) was added to 20 mg
of lysate and 20 ml of IP samples. Samples were separated by SDS-
PAGE, transferred to nitrocellulose membranes and probed with
antibodies to Myc (clone 4A6 Millipore), Flag (Sigma) or calnexin
(Abcam).

2.9. CEBPA overexpression and qPCR
The human CEBPA cDNA clone (Origene: RG218955) was subcloned
into pLXI_TRC401 a lentiviral expression vector containing an inducible
Tet-on TRE promoter.
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SGBS cells were transduced with pLXI-CEBPA or pLXI-GFP as
described previously and 0, 0.1 or 1 mg/ml doxycycline was added into
the culturing media. Cells were collected 48 h after doxycycline in-
duction. Subsequently total RNA was extracted (Qiagen #74181) and
cDNA synthesized (ThermoFisher #K1691) according to the manu-
facturer’s protocol. Quantitative PCR was performed on the cDNA using
Taqman probes for CEBPA (ThermoFisher Hs00269972_s1), AGPAT2
(ThermoFisher Hs00944961_m1) and Cyclophilin (ThermoFisher
4326316E). Fold-changes in comparison to the 0 umg/ml were
calculated using the 2�DDCT method.

2.10. Fluorescence in situ hybridization of AGPAT2 and FACS
sorting of SGBS cells
For the putative CEBPA binding sites identified in the AGPAT2 first
intron and promoter (S1, S2, W; Figure 4B), the genomic sequences
containing 20 bps flanking either the CEBPA motifs or CEBPA ChIP-
peaks (sizes 52e164 bp) were inputted into the sgRNA designer as
with the gene ablation constructs and manually curated to select
sgRNAs that had the cut sites within the putative binding sites with
minimal off-target effects (Supplementary Table 3). These were cloned
into lentiCRISPRv2 as described above along with a guide targeting a
control region in the AGPAT2 first intron (Int1Control). Four pools of
polyclonal lentivirus containing all the sgRNA constructs for S1, S2, W,
or the Int1Control sites were produced. A fifth pool containing all the
guides for all three putative binding loci (S1 þ S2 þ W) was also
produced.
SGBS cells were transduced with virus pools (S1, S2, W,
S1þ S2þW, Int1Control) and differentiated as described above. After
four days, the transduced, partially differentiated SGBS adipocytes
were trypsin-detached, pelleted and washed with PBS to carry out the
RNA fluorescence in situ hybridization for AGPAT2 gene expression
(PrimeFlow� RNA Assay, #88-18005) with the following modifications:

A. All spins were performed at 1000 g for 8 min.
B. Two permeabilization steps followed the fixation step, skipping the

intracellular cell staining step.
C. The target Probe against AGPAT2 (customized high-sensitivity

AGPAT2 Type1 PrimerFlow probe) was used for hybridization.
D. After the PreAmp, Amp and Label Probe hybridizations and washes,

cells were brought to 2 � 106/ml with PrimeFlow RNA Storage
Buffer or Flow Cytometry Staining Buffer, filtered with 100 mm cell
strainer and stored at 4 �C

FACS sorting was performed on a SONY SH800S cell sorter with
100 mm chip.
At least 70,000 cells were sorted into 100 ml 2� lysis buffer (2% SDS,
20 mM EDTA, 100 mM TriseHCl, pH 8.1) and adjusted to 1� lysis
buffer by either 2� lysis buffer or 1� PBS depending on the collected
volume. Samples were incubated at 65 �C for 10 min, cooled to 37 �C
and mixed with RNase Cocktail (Thermo Fisher, AM2286, 1:50) and
incubated for a further 30 min at 37 �C. Then samples were mixed with
Proteinase K (NEB, P8107S, 1:10) and incubated at 37 �C for 2 h and
inactivated at 95 �C for 20 min. Genomic DNA was extracted using
SPRI beads (Agencourt AMPure XP beads, Cat. No. A63881). A 160 bp
amplicon encompassing the S1, S2, or Int1Control sites was generated
and shotgun sequenced (paired-end 500 cycle) on an Illumina Miseq
using standard protocols (https://portals.broadinstitute.org/gpp/public/
resources/protocols).
Genomic DNA modification at each locus (each distinct allele and
the number of reads containing that allele) was tabulated using
CrisprVariants with default parameters [17]. Disruptive indels were
s an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). 111
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quantified by aggregating the number of reads >3 base pair
indels in each sample (S1, S2, Int1C) in the AGPAT2 high and low
fractions. For each site an odds ratio ([disruptivelow/non-dis-
ruptivelow]/[disruptivehigh/non-disruptivehigh]) was calculated with
95% confidence intervals using logistic regression as instantiated
in R3.42.

3. RESULTS

3.1. Gene selection, ablation in adipocytes and imaging
Genes for profiling in adipocytes were selected from genetic associ-
ation studies for body mass index (BMI) [12], Waist-to-hip ratio
adjusted for BMI (WHRadjBMI), fasting insulin (Fins) [25] and type 2
diabetes (T2D) [26e28] (Figure 1A). Loci from these studies were
considered if they were associated with a p-value of 5� 10�8 (i.e. the
threshold for genome-wide significance) or less. A genomic window of
250 kilobases surrounding the lead SNP at each locus was scanned for
protein coding genes. The resulting list of 1180 genes was filtered by
adipocyte expression having to meet or exceed a threshold of 0.1FPKM
during any sampled timepoint (day 0, 4, 8, 15) of SGBS adipocyte
differentiation. The list was further narrowed down by removing genes
at loci for which an alternate causal transcript is widely accepted,
resulting in 84 genes. An additional 41 genes associated with Men-
delian forms of metabolic disease such as congenital lipodystrophy,
insulin resistance and known regulators of adipocyte differentiation
and insulin signaling were selected. Another eight genes known to be
cell essential regulators were selected to create the final list of 133
genes (Supplementary Table 1).
Three independent CRISPR/CAS9 targeting constructs (lentiCRISPRv2
vector) were designed for each of the 133 genes using “Ruleset 2” as
described previously [15]. These were introduced by lentiviral trans-
duction into SGBS pre-adipocytes (Figure 1A), a diploid, human cell
model for adipocytes [18]. After a ten day incubation, the lentivirally
targeted pre-adipocytes were differentiated with a standard cocktail of
adipogenic inducers for 12 days, fixed, stained and imaged by high-
content microscopy, generating w77,000 images. An unbiased se-
lection of 425 morphologic features (such as number of lipid droplets,
size, etc.) was quantified from each image (Figure 1B). This set of
features was filtered by reproducibility among biological replicates
(n ¼ 28 features removed) and further reduced to set aside redundant
(i.e. highly correlated) features across all guides (n ¼ 249) to generate
a set of 148 independent core features (Supplementary Table 2). The
values for the core independent features were averaged across all
three targeting constructs for each gene to generate a “morphologic
profile” for every gene.

3.2. Identification of morphologic interactions and validation of
gene modification
To investigate potential functional relationships between genes, we
performed unsupervised clustering of the morphologic profiles
(n¼ 148 core features) for all 133 genes and included the morphologic
profiles of control cells infected with constructs targeting no genomic
sequences (non-targeting) and cells exposed to lethal antibiotic se-
lection (empty wells) (Figure 1B and Figure 2A). Three major clusters of
morphologic similarity emerged. The largest cluster (“control-like”)
consisted of 106 genes and non-targeting constructs. A second cluster
(“lethal”) contained 13 genes, and was enriched for known cell
essential genes (Figure 2A; odds-ratio ¼ 29, hypergeometric
p < 10�9 of essential genes in “lethal” vs other clusters). The third
cluster (“lipocluster”) consisted of 14 genes and was enriched for
genes known to cause lipodystrophy and syndromic insulin resistance
112 MOLECULAR METABOLISM 24 (2019) 108e119 � 2019 The Authors. Published by Elsevier G
(odds-ratio¼ 8.8, hypergeometric p< 0.008 of lipodystrophy genes in
“lipocluster” vs other clusters).
To evaluate biological plausibility in the relationships identified ab initio
by morphologic profile clustering, we examined two individual fea-
tures, cell number and lipid droplet number, that are known to
correspond with the extent of adipocyte differentiation [16] with
respect to known disease/functional annotations of the underlying
genes (Figure 2B). As expected, ablation of cell essential genes
decreased both cell number and lipid droplet accumulation (Figure 2B
left panels). A similar pattern was observed in the “lethal” cluster
defined ab initio (Figure 2B right panels). Ablation of lipodystrophy
genes decreased lipid droplet number without severely decreasing cell
number (Figure 2B). A similar pattern was identified in the “lipocluster”
with large decreases in lipid droplet accumulation without large de-
creases in cell number compared to the “control-like” cluster. Thus
genes clustering in the lipocluster represent genes that, when ablated,
produce morphologic changes that phenocopy genes known to cause
syndromic human lipodystrophy and insulin resistance.
To further confirm that the cellular phenotypes observed in the lip-
ocluster were due to the ablation of the targeted genes we quantified
the gene modification efficiency of the CRISPR/CAS9 targeting con-
structs. SGBS pre-adipocytes were transduced with the corresponding
targeting constructs, incubated for ten days, and then sequenced at
the genomic DNA surrounding the targeting site in at least 5000 cells
per targeting construct. The gene modification efficiency (i.e. resulted
in insertions/deletions) overall was high, ranging from 72 to 98 percent
of sample alleles for the most effective targeting guide per gene
(Supplementary Table 1).
The lipocluster contained five genes DNLZ, VARS2, COL4A3BP,
USP37, and TSPAN15 not previously known to have a role in
adipocyte biology or function. Three genes (DNLZ, VAR2, and
TSPAN15) were identified in T2D associated loci [26e28] and two
(COL4A3BP and USP37) from BMI associated loci [12,13] (Figure 2A).
The proteins encoded by these genes ranged in function from en-
zymes (VARS2: valyl-tRNA synthetase [29,30], USP37: deubiquiti-
nase [29]) to chaperones (DNLZ [31], COL4A3BP [32]) to a
transmembrane signaling protein (TSPAN15 [33]). With regard to
human genetic variation in these genes, each contained dozens of
rare missense variants of unknown functional consequence when
queried in exome sequencing datasets [34,35].
We further investigated genes in the lipocluster for novel mechanistic
associations using their underlying morphologic profiles. To maximize
biologically meaningful clustering we first evaluated the stability of
clustering using resampling techniques in order to identify pairs of
genes that co-cluster robustly. Two such pairs of genes were identified
in the lipocluster, BSCL2 and PLIN1 (resampling p¼ 0) and CEBPA and
AGPAT2 (resampling p¼ 0.01) (Supplementary Figure 1). Examination
of all the extracted morphologic features in these gene pairs demon-
strated similar perturbed values across multiple features as evidenced
by strong linear correlation (Pearson r ¼ 0.89, p < 2.2 � 10�16)
BSCL2-PLIN1 Figure 2C, r ¼ 0.85, p < 2.2 � 10�16 CEBPA-AGPAT2
Figure 2D).

3.3. Validation of proteineprotein interaction between BSCL2 and
PLIN1
To direct further mechanistic investigation, we initially focused on
individually striking features that were similarly perturbed by both gene
knockouts. BSCL2 and PLIN1 ablated cells demonstrated several
cellular features ranking in the top 1 percent among all gene pertur-
bations (i.e. Z-score > 2.5) (Supplementary Table 2). All of these high
ranking features related to lipid droplet morphology. In the most
mbH. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
www.molecularmetabolism.com



Figure 2: Comparison of morphologic profile annotations to known biology and identification of novel morphologic interactions. (A) Morphologic correlations overlaid
with known gene annotations. Shown is a circular dendrogram relating the morphologic profiles obtained from perturbing 133 genes, non-targeting controls, and empty wells. The
distal leaves of the dendrogram (individual genes) are labeled and color-coded according to their relation to known genetic disease associations and cellular biology. The first three
major branches of the dendrogram are highlighted in color and named “control-like” (blue; inclusion of non-targeting controls), “lethal” (red; inclusion of empty wells) and
“lipocluster” (black; inclusion of many known lipodystrophy genes). (B) Cell number and lipid accumulation in sets of genes according to known disease/biological associations or
morphologic similarity. Boxplots show median, 25th and 75th percentiles of cell number (top panels) or lipid droplet number (bottom panels) in the 133 gene knockouts grouped by
known disease/biological associations (left panels) or by morphologic profile similarity (as shown in 2A). (C) Scatterplot comparing 425 morphologic features (Z-scores) identified
from human adipocytes ablated for BSCL2 or PLIN1. Pearson r ¼ 0.89, p < 2.2 � 10�16. (D) Scatterplot comparing 425 morphologic features (Z-scores) identified from human
adipocytes ablated for CEBPA or AGPAT2. Pearson r ¼ 0.85, p < 2.2 � 10�16.
extreme feature, variation in lipid droplet size, PLIN1 ranked first
(PLIN1 Z-score ¼ 4.7) and BSCL2 second (BSCL2 Z-score ¼ 3.8)
among all genes perturbed (Figure 3A). Examination of the raw images
of BSCL2/PLIN1 ablated cells (Figure 3B) revealed cells with decreased
lipid accumulation overall, but with strikingly large residual lipid
droplets as compared to control cells or cells ablated for other lip-
odystrophy genes such as PPARG.
These observations led us to hypothesize that seipin and perilipin, the
gene products of BSCL2 and PLIN1 respectively, function together in
lipid droplet biology. To test this hypothesis, we first assessed if seipin
MOLECULAR METABOLISM 24 (2019) 108e119 � 2019 The Authors. Published by Elsevier GmbH. This i
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and perilipin interact physically using co-immunoprecipitation and
Western blot in differentiating SGBS cells. Immunoprecipitation of
endogenous perilipin in differentiated cells co-immunoprecipitated
myc-tagged seipin (Figure 3C). In order to specifically localize the
site of this interaction, we performed bimolecular fluorescence
complementation (BiFC) analyses. When perilipin-YFPc and seipin-
YFPn constructs were expressed in 3T3-L1 adipocytes, an interac-
tion was noted at the junction of the lipid droplet surface and the
endoplasmic reticulum (Figure 3D). To evaluate if the interaction be-
tween seipin and perilipin occurs via direct association of the two
s an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). 113



Figure 3: Proteineprotein interaction of BSCL2 and PLIN1 at the lipid droplet surface. (A) Histogram of Z-scores for variation in lipid droplet size in SGBS adipocytes ablated
for 133 genes. Variation in lipid droplet size is quantified by automated image analysis and feature extraction and summarized as the standard deviation for all cells exposed to
targeting constructs for a gene. Adipocytes targeted with constructs against BSCL2 or PLIN1 result in the most extreme Z-scores for variation in lipid droplet size among the 133
genes. (B) 20� brightfield and fluorescence (488 nm, DAPI stained) images of SGBS cells exposed to gene targeting and non-targeting CRISPR/CAS9 constructs and subsequently
differentiated. Residual large lipid droplets are observed with BSCL2 or PLIN1 ablation when compared to control or PPARG ablation. (C) Co-immunoprecipitation and western
blotting of seipin and perilipin in human adipocytes. SGBS adipocytes were transduced with Myc-seipin and differentiated for seven days. Endogenous perilipin was immuno-
precipitated and co-immunoprecipitation of exogenous Myc-seipin is observed. Cyclophilin A was blotted as a cell loading control. (D) 3T3-L1 cells were induced to differentiate and
co-transfected with FLAG-seipin-YFPn and Myc-perilipin-YFPc on day 2 of differentiation. Following a temperature shift to induce the formation of reconstituted YFP, cells were
fixed on day 5 of differentiation and stained for FLAG-seipin (top panels) or Myc-perilipin (middle panels) and DAPI to label nuclei. The direct interaction between seipin and perilipin
is indicated by the presence of YFP signal. Identically transfected cells were used to co-immunostain for FLAG-seipin-YFPn and Myc-perilipin-YFPc (bottom panels). Note that these
cells were not temperature shifted to prevent formation of YFP, which would confound the Alexa Fluor 488 fluorescence used to detect the FLAG epitope. Top and middle panels,
individual images are shown in grayscale and merged images show overlay of YFP (yellow) and FLAG-seipin or Myc-perilipin (red). Bottom panels, individual images are shown in
grayscale and merged image shows overlay FLAG-seipin (green) and Myc-perilipin (red), inset boxes show zoomed images. Scale bars, 10 mm. (E) AFM analysis of the interaction
of perilipin with seipin. FLAG-perilipin and seipin-Myc were co-expressed in tsA 201 cells and proteins were isolated using anti-Myc immunoaffinity chromatography. AFM images
of isolated seipin dodecamers (large particles) singly (upper panels) or doubly (lower panels) decorated by smaller perilipin particles. Scale bar, 25 nm; height scale, 0e2 nm.
Histograms show the frequency distribution of volumes of seipin particles bound to perilipin (n ¼ 100) and of perilipin particles bound to seipin particles (n ¼ 100). The curve
indicates the fitted Gaussian function. The peak of the distribution (�SEM) is indicated. (F) HEK293 cells were transfected with FLAG-perilipin in the absence or presence of either
wild-type Myc-seipin (WT) or mutants lacking the N terminus (DNT), first transmembrane domain (DTM1), ER luminal loop region (Dloop), second transmembrane domain (DTM2),
or the C terminus (DCT). Lysates or anti-FLAG immunoprecipitates were immunoblotted for FLAG, Myc and the ER membrane protein calnexin. Quantification of the interaction of
mutant vs. wild-type seipin from replicate experiments is shown in the lower panel. Data are means � SEM (n ¼ 3). ** indicates p < 0.01 versus co-immunoprecipitation with
wild-type seipin.
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proteins, we employed atomic force microscopy (Figure 3E). This
revealed large particles consistent with the molecular volume previ-
ously reported for seipin dodecamers (2310 � 22 nm3; n ¼ 100)
[22,24]. Associated with these were smaller particles with molecular
114 MOLECULAR METABOLISM 24 (2019) 108e119 � 2019 The Authors. Published by Elsevier G
volume appropriate for perilipin (142� 3 nm3; n¼ 100). Overall, 24%
of immunoprecipitated seipin particles (89/365) were decorated with
perilipin particles. While almost all decorated seipin dodacamers were
associated with one perilipin molecule, we occasionally noted two
mbH. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
www.molecularmetabolism.com



perilipin particles per seipin dodecamer. These experiments revealed
that dodecamers of seipin can bind directly to perilipin. Finally, we
examined which regions of seipin are responsible for the interaction
with perilipin by co-immunoprecipitation with mutated forms of seipin
lacking key functional domains (Figure 3F). The first and second
transmembrane domains of seipin as well as its ER luminal loop
domain were necessary for interaction with perilipin, but the N and C
terminal domains were dispensable. Seipin has been reported to
localize to lipid droplet ER junctions and to particularly influence a key
step in the maturation of lipid droplets [36]. We propose that the direct
interaction we have identified with seipin may facilitate the recruitment
of perilipin 1 to these maturing lipid droplets. Seipin has been reported
to interact with a variety of proteins that mediate lipid droplet
biogenesis [37] and directly to phospholipids on the droplet surface
[38,39]. Supporting our findings are an evolutionarily conserved
functional interaction of the yeast orthologue of seipin with a novel
yeast perilipin-like protein Pet10p [40], and a reported interaction
between seipin and the lipid droplet protein ADRP/Plin2 [41]. In
summary, our morphologic profiling method uncovered a novel direct
proteineprotein interaction between perilipin and seipin, which occurs
at the lipid droplet surface in differentiating adipocytes.

3.4. Validation of genetic interaction between CEBPA and AGPAT2
In contrast to the extreme features observed after BSCL2-PLIN1
ablation, visual examination of the individual features underlying the
morphologic correlation between CEBPA-AGPAT2 did not reveal any
obviously perturbed features. However, the morphologic correlation
across all features taken together was robust (r ¼ 0.85,
p < 2.2 � 10�16) suggesting that many features are similarly per-
turbed by CEBPA/AGPAT2 ablation, but no individual feature is strik-
ingly perturbed for either gene (Z-scoremax CEBPA ¼ 1.3 and Z-
scoremax AGPAT2 ¼ 1.5, Figure 2D, Supplementary Table 2). Exami-
nation of the raw images of CEBPA/AGPAT2 ablated cells revealed cells
with decreased lipid accumulation compared to controls, but did not
appear distinctive on manual visual inspection in comparison to
ablation of other lipodystrophy genes such as PPARG (Figure 4A).
Knowing that CEBPA is a transcription factor that promotes adipocyte
differentiation [42] and that AGPAT2 encodes an acyltransferase
enzyme required for adipocyte differentiation [43], we hypothesized a
genetic regulatory interaction with CEBPA regulating the transcription
of AGPAT2. In order to substantiate this hypothesis, we first examined
the genomic DNA at the AGPAT2 locus for potential C/EBPa binding
sites. We scanned a genomic window �20 kilobases (kb) surrounding
the AGPAT2 gene for sequences likely to be C/EBPa consensus motifs
and overlaid previously published C/EBPa binding (ChIP-seq) data
collected from differentiated SGBS cells [44] (Figure 4B). Three po-
tential binding sites were identifiede Strong 1 (S1): 11 kb upstream of
the AGPAT2 exon start, Strong 2 (S2): 0.8 kb within the first intron and
Weak (W): 7.6 kb in the first intron. The three sites were labeled
“strong” (S) and “weak” (W) on the strength of the evidence for being a
C/EBPa binding site; S1 and S2 had ChIP-seq peaks that overlapped a
C/EBPa consensus binding motifs whereas W had a ChIP-seq peak that
did not overlap the most proximate consensus binding motif. To test for
a functional regulatory interaction we over-expressed CEBPA in un-
differentiated SGBS cells and found this to be sufficient to induce
AGPAT2 gene expression (Figure 4C). To further assess if this func-
tional interaction was direct and required the identified C/EBPa binding
sites (Figure 4B), we utilized genome engineering to selectively disrupt
these sites in differentiating SGBS cells and examined the transcrip-
tional effect on AGPAT2. We treated undifferentiated SGBS cells with
an array of CRISPR/CAS9 constructs targeting the S1, S2 and W sites
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singly and in combination, then applied a differentiation stimulus and
examined AGPAT2 gene expression by fluorescence in situ hybridi-
zation and flow cytometry (FISH-FLOW) (Figure 4D). In undifferentiated
pre-adipocytes a single peak of low AGPAT2 expression is observable
whereas differentiating cells treated with a control construct targeted
to the AGPAT2 first intron exhibit a second peak of AGPAT2 expression
with w10-fold increased staining intensity. This second peak of
increased AGPAT2 expression is attenuated in differentiating adipo-
cytes treated with constructs targeted to the S1, S2, or W sites. The
second peak is almost fully attenuated in cells treated with constructs
targeting all three sites simultaneously. Given that our genome engi-
neering strategy leveraged CRISPR/CAS9 double strand genomic DNA
breaks and error prone non-homologous end joining repair [45] we
expected that the resulting cell populations likely contained a spectrum
of DNA alterations ranging from perfect repairs and single nucleotide
changes to large insertions/deletions (indels). We utilized this experi-
mentally induced genetic variation to further assess the requirement
for the C/EBPa binding sites in AGPAT2 gene expression predicting that
cells from the low end of the distribution would harbor more disruptive
indels compared to cells from the high end of the distribution
(Figure 4E). This prediction was tested by collecting 70,000 cells via
FACS from the low and high ends of the AGPAT2 expression distri-
bution in the engineered cell populations and sequencing their DNA at
the corresponding targeting sites (S1 or S2). We examined S1 and S2
because the compact size of these binding sites enabled them to be
fully encompassed in DNA fragments amenable for shotgun
sequencing. Among the most frequently occurring mutations, large
deletions were observed more frequently in cells from the bottom of
the AGPAT2 gene expression distribution vs the top (Figure 4E
alleles �16:32D, �16:31D targeted at S1). Systematic quantification
of all of the sequenced DNA demonstrated an accumulation of
disruptive indels (i.e. >3 bp) in cells with low versus high AGPAT2
expression the populations targeted at S1 (odds ratio: 2.67, 95% CI
2.64e2.70) or S2 (odds ratio: 2.70, 95% CI 2.66e2.74) as compared
to control (odds ratio: 1.73, 95% CI 1.60e1.88) (Figure 4F).

4. DISCUSSION

In this study we developed an approach for functional characterization
of human disease genes by combining systematic genetic perturbation
in a native cellular context with in depth quantification of the resulting
cellular morphology. We tested this approach with metabolic disease
genes expressed in adipocytes, identifying and subsequently validating
novel interactions between BSCL2 and PLIN1 (proteineprotein) as well
as CEBPA and AGPAT2 (genetic regulatory). These results demonstrate
that our assay system can interrogate multiple cellular mechanisms
revealing new biology regarding the two most frequently identified
gene disruptions (BSCL2 and AGPAT2) [46] leading to congenital
generalized lipodystrophy. Specifically CEBPA was found to regulate
AGPAT2 expression and perilipin was identified as a novel seipin
interacting protein.
Our approach is likely to generalize to other genetic diseases with
cellular origins. In its technical aspects our use of CRISPR/CAS9 allows
a high degree of gene targeting specificity [47] and enables any
mammalian cell type to be targeted [48]. Our stably integrating lenti-
viral vector system drives gene disruption towards completion [49]
enabling high confidence modification (Figure 1B, Supplementary
Table 1). The use of cellular morphology as a readout for annotating
gene function is a relatively recent advance [50], and has thus far been
deployed in cancer cell lines (e.g., U2OS [8], A549 [51], HeLa [6,7]).
Successful examples of targeted use for chemical screens in patient
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Figure 4: Genetic interaction between AGPAT2 and CEBPA. (A) 20� brightfield and fluorescence (488 nm, DAPI stained) images of SGBS cells exposed to gene targeting and
non-targeting CRISPR/CAS9 constructs and subsequently differentiated. Decreased lipid accumulation is observed with AGPAT2, CEBPA, or PPARG ablation. (B) (upper) The AGPAT2
gene structure is shown (hg19) with overlaid tracks showing the genomic positions of C/EBPa ChIP-Seq peaks in differentiated SGBS cells (Galhardo et al., 2014). The genomic
position of high-scoring C/EBPa consensus motifs is also shown alongside a selected control region in the first intron (Int1C). (lower) Expanded base pair resolution view of three
putative C/EBPa binding sites identified on the basis of overlapping of CHIP-seq (pink boxes) and consensus motif (blue boxes) data. For each site identified site S1, S2 and W the
positions of the predicted cut site of selected CRISPR/CAS9 constructs is shown. (C) Dosed overexpression of CEBPA in undifferentiated SGBS cells using a doxycyline-inducible
transgene with assessment of AGPAT2 gene expression. RT-qPCR fold-change data are shown demonstrating a dose response for AGPAT2 induction in response to CEBPA over-
expression as compared to GFP overexpression. (D) FACS sorting of differentiating SGBS cells according to AGPAT2 gene expression. SGBS cells were treated with CRISPR
constructs targeting putative C/EBPa binding sites or a control region in the first intron, differentiated, and stained for AGPAT2 expression. Histograms of AGPAT2 gene expression
are shown for CRISPR-treated populations as well as undifferentiated cells. In differentiated cells a second peak of increased AGPAT2 gene expression is observed and is
attenuated by treatment of CRISPR constructs targeting C/EBPa binding sites. Grey boxes denote the sorting gates (comprising 6.5e8.5% of the total distribution) of low and high
AGPAT2 expressing cells collected for genomic analysis. (E) Indel quantification at the S1 C/EBPa binding site of SGBS adipocytes sorted by AGPAT2 expression. SGBS cells were
treated with S1 site targeting CRISPR constructs as shown in D) with 70,000 cells shotgun from the low and high ends of the AGPAT2 expression distribution. Listed are the ten
most frequent alleles collectively comprising 60 and 68 percent of all sequenced alleles. Large indels are enriched in treated cells expressing low levels of AGPAT2. (F) Indel
quantification at the intron 1 control, S1, or S2 C/EBPa binding sites in SGBS adipocytes sorted by AGPAT2 expression. SGBS cells were treated with control, S1, or S2 site targeting
CRISPR constructs as shown in D) with 70,000 cells shotgun from the low and high ends of the AGPAT2 expression distribution. The stacked barplots show the relative frequency
and type of allele at the sequenced site corresponding to each targeting construct. An increase in proportion of large indels can be seen in the low AGPAT2 expression bin in
adipocytes treated with S1 or S2 targeting constructs.
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derived cells (e.g., iPS [52] and vascular endothelial cells [53]) suggest
that our study in human adipocytes will likely translate to other disease
relevant cell models.
This study highlights the use of computer vision to identify morphologic
correlations not evident from human visual inspection of microscopy
images. The morphologic consequence of ablating either BSCL2
or PLIN1 in differentiating adipocytes (overall decreased lipid accu-
mulation and unusually large lipid droplets; Figure 3A) could have been
116 MOLECULAR METABOLISM 24 (2019) 108e119 � 2019 The Authors. Published by Elsevier G
detected by human visual inspection of w77,000 images, but the
CEBPA-AGPAT2 interaction could not have been distinguished manu-
ally (Figure 4A). This is likely due to the lack of “processing” performed
by computer vision versus human vision. In computer vision, the image
analysis software retains the “raw data” consisting of quantified, in-
dividual morphological feature whereas in human vision these features
are integrated by the visual cortex into a synthesized representation of
the image from which the raw features are not easily discernible. It is
mbH. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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this ability to quantify hundreds of individual features by computer
vision that enables robust correlations to be identified even when any
individual feature does not stand out.
As a proof-of-concept, the findings of our study are subject to a number
of limitations. Notably, while many previously known lipodystrophy
genes fell within the “lipocluster” (Figure 2A), several did not (e.g.,
CAV1, PTRF, AKT2, CIDEC, LMNA). In the case of genes causing
generalized lipodystrophy, this may reflect the fact that while disruption
of BSCL2 or AGPAT2 leads principally to a lack of adipose tissue, PTRF
and CAV1 mutations cause a more complex phenotype in affected
patients [46]. The majority of mutations causing partial lipodystrophy
exhibit autosomal dominant inheritance and may act as dominant
negative forms or have complex and poorly understood molecular ac-
tions, as in the case of LMNA [46,54]. Hence the actions of these
pathogenic mutations might not be easily modeled by loss-of-function
or ablation, as in our experiments. Furthermore, our results should also
not be interpreted as comprehensive, i.e., any particular gene falling in
the “control-like” cluster does not indicate a lack of relevance to dis-
ease or to adipocyte biology. For example, leptin ablation would not be
expected to read out in our cell-autonomous assay. Also our experi-
ments were performed under standard differentiation conditions that
include a pharmacological dose of rosiglitazone, a PPARg inducer not
found in nature [55]. Thus, a gene impairing adipocyte differentiation
in vivo more subtly might be masked by this stimulus in vitro. By de-
leting genes prior to differentiation our study cannot distinguish be-
tween morphologic effects secondary to changes in differentiation
versus mature adipocyte function. Overall, the novel findings regarding
the regulation of AGPAT2 and function of seipin demonstrate the power
of our morphometric approach to identify new mechanistic insights
regarding genes important for human metabolic disease.

5. CONCLUSIONS

In the future, our approach may be applied to any disease-cell model
pair, incorporating multiple different cellular stimuli with the same
readout to tease out more subtle genetic effects and highlight other
morphologic interactions. Incorporating different cellular stimuli would
also enable higher order clusters with multiple genes to be linked to
cellular pathways, as genes that are critically dependent on one
another will be more likely to cluster under multiple conditions (e.g.
known CCT chaperonin complex genes co-clustering; Figure 2A).
Finally, by virtue of using human cell models and a multi-dimensional
morphometric readout, our approach provides an assay system to
functionally study human coding variants in the ablated genes. As we
have previously exemplified with PPARG [16,49] the ability to experi-
mentally determine the function of rare coding variants can establish
genotypeefunctionephenotype correlations for use in clinical diag-
nosis of novel variants in a known disease gene. Applied to novel
genes such as the ones identified in this study with no previous link to
adipocyte function (DNLZ, VARS2, COL4A3BP, USP37, and TSPAN15),
transgene complementation with human coding variants reading out
“rescue” of the identified morphologic profile with correlation to
metabolic disease phenotypes would provide strong evidence for
disease causation and direction of effect.
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